[Devika, 2(10): October, 2013]

| JESRT

ISSN: 2277-9655
Impact Factor: 1.852

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

AUTOSAR Multicore Operating System | mplementation for M PC5668G
Devika K", Syama R? Anurag R®
-2 Department of Computer Science &Engineering, SteitraCThirunal College of Engineering,
Trivandrum, India
*Competency Manager, Tata Elxsi Ltd, Technoparkyafrirum, India
k _devu@yahoo.co.in

Abstract

The advanced features in hardware as well as twadd field reflected in embedded system domaia.als
Microcontrollers used in automobiles are turnedmalticore for supporting parallel execution. Fofficént
utilization of multicore microcontrollers it is nessary to design operating systems in order tcstafsatures
provided by hardware. Multicore operating systemalisbe capable to handle each independent progessiit
inside multicore microcontroller. Designing opengtisystems for multicore processors is very cruogause the
improvement in performance depends strictly on sb&ware implementation. AUTOSAR (Automotive Open
System Architecture) is a standard that provide mmom platform for automotive applications. It alswreases
interoperability and interchangeability of softwateveloped by different users. AUTOSAR providesdglines or
standards for development of software in automoteeain. AUTOSAR version 4.0 describes new ideas fo
implementing multicore operating system for autdw®tdomain. New features added in AUTOSAR 4.0 are
spinlock, Inter Os-Application Communication, midtire startup/shutdown and other inter core sesvidéis
paper discusses the design and implementationlglethimulticore operating system for dual core pssOr

MPC5668G.

Keywords: AUTOSAR, OSEK/VDX, Multicore, Microcontroller, $plock

I ntroduction
Multicore processing is very important today

because they facilitate parallel computing. It rbaytask
level parallelism, data level parallelism, instianotlevel
parallelism. This paper describes about task level
parallelism. The application to be executed is dbdi
into tasks and execution of tasks is distributedmgn
different cores. In task parallelism each processor

executes a process on same or different data. Each

process may execute same or different code. Ir thei
execution different process may communicate wite on
another. This communication is achieved by pasdatg
from one process to another. A crucial step in lfEra
programming is the allocation of tasks to the pssoes
and the definition of their execution order [1].

Two open standards available in automotive
domain for providing common platforms for software
design are Open systems and corresponding intsrface
for automotive electronics / Vehicle Distributed
executive (OSEK/VDX)[2] and Automotive Open
System Architecture (AUTOSAR)[3]. They are realdim
operating system standards. AUTOSAR OS is an
extension of OSEK OS and it uses OSEK as basis.

http: // www.ijesrt.com

Mapping,
scheduling

Subtask decomposition,
dependence analysis

Programming

#include «..

. n vold maiafl
Application |

specification

Executable
program

Fig 1. Parallelization processin parallel programming

Task Management
Scheduler

ISB N anzpement
Resource Management
Counters

Alarms

Events

Error Handlinp, Hook
Foutnes

7

Memory

Fig 2: OSEK OS Services

Services provided by OSEK OS are shown in figure 2.
They are

(C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

[Devika, 2(10): October, 2013]

A. Task Management: OSEK OS provides two
different types of tasks. They are basic tasks and
extended tasks. Basic task releases the procetser ia
task termination or in execution of interrupt seevi
routine as a result of interrupts. Extended tasks
introduced one additional state called waitingestathe
waiting state allows the processor to be releasedta
be reassigned to a lower-priority task without tleed to
terminate the running extended task [2].

B. Scheduler: The scheduler will organize the
task execution sequence. OSEK supports multitasking
scheduling policy is important to determine whietsk
will get the processor next. OSEK/VDX supports two
scheduling policies they are full preemptive schiedu
and non preemptive scheduling. Scheduling technique
used is priority scheduling. If two tasks have same
priority, then tasks are scheduled based on theivah
time.

C. Interrupt Management: OSEK/VDX supports
two types of interrupts based on the Interrupt Berv
Routine (ISR). They are category 1 interrupts and
category 2 interrupts. A category 1 ISR functioesloot
contains any APIs supported by operating systems.
Besides category 2 ISR functions make use of OS
provided services. Rescheduling is not possib&den
the ISR.

D. Resource Management: Resource
management is necessary to ensure that two tasketca
occupy the same resource at a time. Resource
management prevents priority inversion and deadinck
some extend. Priority inversion can be avoided by
Priority Ceiling Protocol (PCP) [3]. Each resourise
assigned a static priority called ceiling prioritpCP
temporarily raises the priority of the task to teling
priority of the resource if the priority of the kais less
than the ceiling priority. The original priority ¢iie task
will be restored latter whenever the resourcelesased.

E. Counters and Alarms: Counter and alarms
are used in OSEK operating system for processing
recurring events. Counter is derived from hardware
software timer. Alarms are attached to the couniene
than one alarm can be attached to one countermAlar
performs actions like task activation, set eventd an
execution of callback functions at their expirymsi

F. Events: Events are used for synchronization
among tasks. They are assigned only to extendéd.tas
Waiting for an event causes task enters into waiiate.
When the event is set by another task, the stadartier
task will be changed from waiting to running or dga
state.

G. Error Handling and Hook Routines: Hook
routines are user defined code within the OS. Tdrey
called by the operating system on special situation
depending on OS implementation. They have higher

http: // www.ijesrt.com

ISSN: 2277-9655
Impact Factor: 1.852

priority than all tasks and cannot be interrupted b
category 2 interrupts. Different Hook routines used
OSEK are startup hook, shutdown hook, error hook,
post-task hook and pre-task hook.

AUTOSAR OS

The functionalities provided by AUTOSAR OS
are backward compatible with OSEK OS. New concept
introduced in AUTODAR is schedule table. Schedule
table encapsulates a set of expiry points and addsess
synchronization problem. Task activation and event
setting are the actions associated with expiry etgm
One or more actions can be assigned with one expiry
element. Schedule table has a duration which isifepe
in ticks. OS will repeatedly process schedule tatid
will fire each expiry point in turn. Structure oftseedule
table is shown in Fig. 3. Schedule table may dorga
set of tasks to activate and set of events to Bask
activations should be processed first then evértisre
are two types of schedule tables. Single shot sdbed
table will stop after executing all expiry points.
Repeating schedule table will loops back to inigapiry
point after processing final expiry point. The rafeg
period is equal to the duration of repeating schedu
table. It is possible to start schedule table fram
absolute or relative value of the counter drividee t
schedule table. Schedule table expiry elements are
synchronized with the underlying counter. Two typés
synchronization are possible. They are explicit
synchronization and implicit synchronization [4].

AUTOSAR OS provides facility for stack
monitoring. Stack monitoring will find out whether
task or ISR exceeded specified stack usage ainteedf
context switch. AUTOSAR supports all the operating
system objects of OSEK/VDX OS. The collection of
these objects (tasks, ISRs, alarms, schedule tables
counters, and resources) forms an OS applicatitve. T
rights to access objects from applications might be
granted during configuration. OS application may be
trusted or non-trusted. Trusted applications alewad
to run in privileged mode and they have unrestticte
access to memory and OS API. Non trusted applicatio
have restricted access to memory and OS APIs.
AUROSAR OS provides both memory and timing
protection [4].

AUTOSAR Multicore OS Specifications

AUTOSAR version 4.0 specifies extension to
AUTOSAR OS and provides mechanism to support
multicore micro-processors. The Multi-Core OS in
AUTOSAR is not a virtual ECU concept, instead ialsh
be understood as an OS that shares the same
configuration and most of the code, but operates on

(C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

[Devika, 2(10): October, 2013]

different data structures for each core [5]. Obj@etsk,
Counter, Alarm, Resource) IDs should be unique
across all cores. Every object ID should be refgriio
one entity independent of the core it is residifbis
applies to all objects without considering whethiezy
are shared or not. The OS can be entered on eaghnco
parallel. TASKs and ISRs cannot dynamically change
cores by means of the scheduling algorithm.

Expiry Point1 Expiry Paint2

Activatio Actl

s tivations .
T2.T3 ™, T ®

)
Initial Offset = 6 - Final Delay = &

Fig. 3 Structure of Schedule Table

A. Locatable Entity (LE): LE is the term used to
refer the object which is contained entirely on coee.
The assignment of objects to cores is defined at
configuration time.

B. Start-up: Core start-up is depending on the
hardware. Hardware starts only one core called enast
core. All other cores remain in halt state untiythare
started by the software. In this master slave -sfart
behavior the master core does not need software
activation. After startup StartOS() API will be kel on
each core. StartOs provides two synchronizatiomtpoi
One is before the execution of start-up hook arnutheer
is after the execution of application specific &tpHook
and before the scheduler is started. Fig. 4 shihes
multicore master-slave start-up behavior. Starf@®(
is called by passing application mode as argumient.
multicore OS all the cores shall be run in same
application mode.

C. Shutdown: AUTOSAR 4.0 introduced a new
APIl ShutdownAllCore which facilitates simultaneous
shutdown of all cores. The APl executes application
specific shutdown hook followed by a synchronizatio
point. All cores should be synchronized beforeicgll
shutdown hook. ShutdownOS() API is called on each
core to shutdown that particular core.

http: // www.ijesrt.com

ISSN: 2277-9655
Impact Factor: 1.852

Cored

Hardwara
Specific Start-up
coda Core 1
Hardwarz
Specific Startup
1artO80)
Pell Srt080 coda Core2
0 Initialization Start Core E —
Code ?”‘_i.'l”é
Call 5=rtDS0) pecific Start-up
Svnchromiza cods
Chizas 08 Initislizstion
Cods Call StartOS{)
T orionion 05 Initislization
. Cod=
Coras
Synchronize First Synchronization Pomt
Coras
StartupHodk StartupHook StartupHock
Application
StartupHook Application Application
StartupHook StartupHock
Svnchronize
Cines %'-'nchromz,e g:j-'nchronizs
el s Second Synchronization Point
Schaduling Schaduling Schaduling

Fig. 4 AUTOSAR Multicore Start-up behavior

The hardware assigns a physical core id to each
core. This physical core id cannot be used as @exiin
case of core specific variables. So mapping from
physical core id to logical core id is necessargplging
of applications and other software components setha
on the logical core id. Counters can be incrementdyg
by the core on which it is assigned. Counters aneore
can drive alarms and schedule tables residing amesa
core.

Inter OS-Application Communication (I0C) is
used in AUTOSAR 4.0 for communication between
applications. If applications resides in differecdres
then 10C become inter-core communication. IOC may
not necessarily require cross core communicatioh. A
communication must be routed through RTE (Real Time
Environment) on server and on receiver side. I0C
supports 1:1 communication and N:1 communicatie, i
one sender one receiver communication and multiple
sender and receiver communication. 10C provides bot
unqueued and queued communication services.

MPC5668G Architecture
MPC 5668G is Freescale’s dual core
microcontroller. It is a 32-bit microcontroller Wipower
PC architecture. It supports all automotive
communication protocols. It provides 592 KB static
RAM and 2 MB flash memory. 592 KB RAM is split
into two blocks. MPC 5668G cores are e200z6 and
€200z0. e200 processors are designed deeply for
embedded control applications that require low cost
solutions rather than maximum performance. It is an
automotive focused product designed to satisfy fieed
integration of electronic features within the védidt

(C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

[Devika, 2(10): October, 2013]

can be used as automotive gateway. Both cores have
same instruction set, same set of registers and sata
representation. MPC5668G offers symmetric
multiprocessing because the RAM is shared between
both cores [6].

mtsu';:mn SWT Power [e
VREG 20026 Core. ’ Nexus.

FPU/SPE

m. &ﬂ-] [N;
3 exus
VLE 20020 Class 2+
[—ﬁm mmy Core
— 32-¢ch.
eDMA 32 KB Cache VLE

Crossbar Switch

FEC

BIEKB

Standw
Crossbar Slaves

‘Communications /O System

e i i

Fig. 5: MPC5668G Block diagram

Implementation Details

A. Core Identification: e200z6 and e200z0
processor register array contains a processor ajontr
register called Processor Version Register (PVR).46
core PVR value is 0x8112_ 0000 and for Z0 core PVR
value is 0x8171_0000. The GetCorelD() API will read
the value of PVR register. Depending upon the known
values of PVR register each core is differentiabsd
GetCorelD(). GetCorelD will return the logical cadeof
each processor. For example, Z6 core logical i@ and
Z0 core logical id is 1. Logical id s assigned bg 0OS
developer.

B. Start-up: €200z6 is the master core. So after
booting, Z6 core will be active. Master core wittizate
the slave core by calling StartCore(Z0). When oglli
StartCore(Z0) the Z0 core will be activated by ttisg
the value of reset vector register(ZOVEC) of ZOecor
After startup each core will call StartOS() API hvit
application mode as argument.

C. Synchronization: As discussed above
StartOS() will synchronize the cores twice.
Synchronization point is defined between cores &ken
sure that system is initialized properly [7].
Synchronization is performed by using a counter and
semaphore. Counter is a global variable that itdibaw
many cores had to be synchronized. At the
synchronization point, each core will increment the
counter variable and test whether the counter veduel
to the total number of cores. If counter valueeisslthan
total number of cores, the core will wait.

D. Scheduling: Each core have different
scheduler and priority ring buffer for schedulirasks
assigned to it. Core on which the task to be ewecig
specified by the configuration file. If task is @peed to

http: // www.ijesrt.com

ISSN: 2277-9655
Impact Factor: 1.852

Z6 core, the task is added to the priority ringfeubf Z6
and scheduler of Z6 will handle task execution.

E. Inter-core task Activation: Task activation is
a type of alarm expiry action. Task assigned to core
can be activated by an alarm residing in differente.
When a task is activated, the task id will be adethe
priority ring buffer corresponding to the core ohigh it
should be executed. The scheduler of that core will
consider the task at the next scheduling point.
AUTOSAR multicore OS supports inter-core event
handling also.

F. Spinlock: Spinlock implementation uses
atomic set-and-test functionality provided by the
hardware. Spinlock is used to protect critical isectind
shared memory. Spinlock may lead to deadlock. K tas
can be protected from deadlock either by wrapphey t
spinlock with SuspendAllinterrupts() APl or by
preventing nested spinlock calls. Nested spinlogksc
can be avoided by assigning numbers to resources in
increasing order. The resource numbers will be ddde
a linked list. When a task trying to acquire muéip
resources, it can take resources only in the drdehich
they are stored in the linked list.

G. I0C : The I0C allows one or more data item
transfer per atomic communication operation. A data
item can either be a value for atomic basic dgtagyor a
reference for user defined data structures. 10Cd sen
function writes data to the buffer in memory ardaiok
is shared by both sender and receiver. Concuraasa
to the data in buffer is protected by using spikld€ach
atomic communication has to be specified in the 10C
Configuration Description in a standardized XML
format. Sender-Receiver communication can be
performed in two semantics; first one is data sdivsn
(last-is-best semantics) and second is event sé&sant
(First-is-best semantics). 'IsQueued’ attribute data
element is used to distinguish between data andteve
semantics. In event semantics this attribute issétue
and in data semantics this attribute will be sdatse [8].
There is one description block per communication
operation specifying
- Unique identifier
- Data type(s)

- Sender information

- Receiver information

- Name of callback function on receiver side ineca$
notification.

-Communication is queued or unqueued (last is best)

- In queued communication: Length of the queue
Software components send items in queued semanttics
unqueued semantics. RTE_Send_<id>(data) call ill b
mapped to locSend_<Id> (<data>). Fig. 5 shows 10C
with shared memory. Concurrent access to shared
memory results in data inconsistency. It is verpanant

(C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

[Devika, 2(10): October, 2013]

to ensure data consistency. One way to ensure data
consistency is task blocking strategy [8]. Data
consistency can be achieved by protecting the code
which is handling shared memory using spinlock.
a) Last-is-Best Semantics

This semantics is used for data transmission.
Buffer used for this communication use a singlenglat
gueue or a single memory location. Each call todsen
function will overwrite data in the buffer. i.e,ethold
value will be replaced by the new value. Read aritew
operations should be atomic. For data consistersad
and write operations are protected by interrupaliiag
and spinlock. Read access always return last redeiv
data. When new data received, previous value véll b
discarded without considering whether it was readad.
On sender side, AUTOSAR supports two functions
which are using Last-is-Best semantics. They are
IOCWrite_Id (data) : - used to transfer single data
element

IOCWriteGroup_ld(datal, data2, ...) :- used to
transfer multiple data elements
Receiver side functions are

IOCRead_Id (data) : - used to read single data
element

IOCReadGroup_ld(datal, data2, ...) :- used to
read multiple data elements
b) Event Semantics

Events are important and they have to be
handled appropriately. Loss of events cannot be
tolerated. So isQueued attribute should be setieo The
received events have to be buffered into a quebe. T
gueue should have a fixed length which is specified
configuration file. Send operation will put the aveo
the end of the queue. Receive operation will reazhe
from front of queue. If queue is full received ewshall
be discarded.

Software Component

Software Component

I0C Motification

os

10C Module

Fig. 5 Inter OS-Application Communication through RTE

Core 0 Core 1

Sender side event semantic functions are

IOCSend_Id (data) : - used to transfer single event
IOCSendGroup_ld(datal, data2, ...) :- used to transfe
multiple events

http: // www.ijesrt.com

ISSN: 2277-9655
Impact Factor: 1.852

Receiver side functions are
IOCReceive_Id (data) : - used to read single diziaent
IOCReceiveGroup_ld(datal, data2, ...) :- used to read
multiple data elements
H. Building and Debugging

Compiler used is Wind River Diab compiler[9].
It provides the control and flexibility required noeet the
demands of embedded software development. It is
compliance with latest ANSI and ISO standards for C
and C++. It supports wide variety of target arattitiees
including Power PC. Lauterbach is used for debuggin
the program. Lauterbach PowerTrace and Trace32
software debugger provide instruction trace, memory
monitoring capabilities, and kernel mode debugging.
These capabilities enable the software developer to
diagnose real-time software failures and memory
corruption issues such as stack overflow and wild
pointers. For providing on-chip debug logic, premes
using JTAG (Joint Test Action Group) interface. A
is IEEE 1149.1 Standard Test Access Port and
Boundary-Scan Architecture. It allows developers to
communicate with the chip and to perform operations
like single stepping and breakpointing. Multicore
processors required debugging of multiple coresavia
shared debugging interface. Multicore processorssdo
not provide separate JTAG interface for each core.
Lauterbach provides provision to address seversdsco
via joint JTAG interface and synchronous debugging.
TRACE32 is an emulator system for MCUs that proside
emulation memory and a bus state analyzer.

20
-E =

10C Read_Td(dsta)

E—» 10CSendGroup_Id(datal, dats?, ...

10CWrite Td(data)

10CSend(data)

10CSend(data)

10CSendGroup_Id(datal, datad, ...

10CSendGroup_ld(datal, data?, ...)

10C Quene

S|][] w|pa]m] - o -

Shared Memory

Fig. 6 |OC Functions using shared memory

Conclusion

Due to the increasing demand for electronic
security and comfort in vehicles it is necessaryuse
more multi core ECUs. It is the only way to incredke
performance. AUTOSAR 4.0 is a first step made is th
direction. In the area of code migration from sengbre
code to multi-core code there is an enormous
development pressure of automated solutions. How f
and fast multi core processors spreading depené on
number of criteria. Multicore operating system sedi in

(C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

[Devika, 2(10): October, 2013]

cars if there is a large need for more processmgep
and the performance advantage of multi processt/<£C
Multi core ECUs can only cover the market, if thests
of the software development are not growing dratnati
This can only succeed if existing single core code be
migrated cost-effectively on multi core systems.
AUTOSAR 4.0 is the preliminary version of multicore
operating system. Additional features that can daed
in future are dynamic allocation of tasks to coudiggct
access from BSW modules to IOC services, activation
task on receiver side as a result of IOC notifarati

References

[1] Quinn Michael J, Parallel Programming in C
with MPI and OpenMP McGraw-Hill Inc. 2004.
ISBN 0-07-058201-7

[2] OSEK/VDX Operating System specification
2.2.3

[3] R. Rajkumar and J. Lehocsky. Priority
Inheritance Protocols: an Approach to Real-
Time Synchronisation. IEEE Transaction on
Computer, 39(9):1175-1185, 1990.

[4] AUTOSAR Specification of Operating System
Version 3.0.2

[5] AUTOSAR Specification of Multicore OS
Architecture version 4.0

[6] MPC5668x Microcontroller Reference Manual
for MPC5668E/MPC5668G, Document
Number: MPC5668XRM, Rev. 2, 09/2008

[7] Configuring a Mixed Asymmetric Multicore
Application for StarCore DSPs, Freescale
Semiconductor Application Note, Document
Number: AN4155, Rev. 0, 10/2010

[8] AUTOSAR Specification of RTE Software,
version 1.0.1

[9] Wind River Compiler for PowerPC, User's
Guide 5.7

ISSN: 2277-9655
Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

[3035-3040]

