
[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

AUTOSAR Multicore Operating System Implementation for MPC5668G
Devika K*1, Syama R2, Anurag R3

*1,2
 Department of Computer Science &Engineering, Sree Chitra Thirunal College of Engineering,

Trivandrum, India
3Competency Manager, Tata Elxsi Ltd, Technopark, Trivandrum, India

k_devu@yahoo.co.in
Abstract

The advanced features in hardware as well as in software field reflected in embedded system domain also.
Microcontrollers used in automobiles are turned to multicore for supporting parallel execution. For efficient
utilization of multicore microcontrollers it is necessary to design operating systems in order to assist features
provided by hardware. Multicore operating systems shall be capable to handle each independent processing unit
inside multicore microcontroller. Designing operating systems for multicore processors is very crucial because the
improvement in performance depends strictly on the software implementation. AUTOSAR (Automotive Open
System Architecture) is a standard that provide common platform for automotive applications. It also increases
interoperability and interchangeability of software developed by different users. AUTOSAR provides guidelines or
standards for development of software in automotive domain. AUTOSAR version 4.0 describes new ideas for
implementing multicore operating system for automotive domain. New features added in AUTOSAR 4.0 are
spinlock, Inter Os-Application Communication, multi-core startup/shutdown and other inter core services. This
paper discusses the design and implementation details of multicore operating system for dual core processor
MPC5668G.

Keywords: AUTOSAR, OSEK/VDX, Multicore, Microcontroller, Spinlock

Introduction
Multicore processing is very important today

because they facilitate parallel computing. It may be task
level parallelism, data level parallelism, instruction level
parallelism. This paper describes about task level
parallelism. The application to be executed is divided
into tasks and execution of tasks is distributed among
different cores. In task parallelism each processor
executes a process on same or different data. Each
process may execute same or different code. In their
execution different process may communicate with one
another. This communication is achieved by passing data
from one process to another. A crucial step in parallel
programming is the allocation of tasks to the processors
and the definition of their execution order [1].

Two open standards available in automotive
domain for providing common platforms for software
design are Open systems and corresponding interfaces
for automotive electronics / Vehicle Distributed
executive (OSEK/VDX)[2] and Automotive Open
System Architecture (AUTOSAR)[3]. They are real time
operating system standards. AUTOSAR OS is an
extension of OSEK OS and it uses OSEK as basis.

Fig 1. Parallelization process in parallel programming

Fig 2: OSEK OS Services

Services provided by OSEK OS are shown in figure 2.
They are

[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

A. Task Management: OSEK OS provides two
different types of tasks. They are basic tasks and
extended tasks. Basic task releases the processor either in
task termination or in execution of interrupt service
routine as a result of interrupts. Extended tasks
introduced one additional state called waiting state. The
waiting state allows the processor to be released and to
be reassigned to a lower-priority task without the need to
terminate the running extended task [2].

B. Scheduler: The scheduler will organize the
task execution sequence. OSEK supports multitasking so
scheduling policy is important to determine which task
will get the processor next. OSEK/VDX supports two
scheduling policies they are full preemptive scheduling
and non preemptive scheduling. Scheduling technique
used is priority scheduling. If two tasks have same
priority, then tasks are scheduled based on their arrival
time.

C. Interrupt Management: OSEK/VDX supports
two types of interrupts based on the Interrupt Service
Routine (ISR). They are category 1 interrupts and
category 2 interrupts. A category 1 ISR function does not
contains any APIs supported by operating systems.
Besides category 2 ISR functions make use of OS
provided services. Rescheduling is not possible inside
the ISR.

D. Resource Management: Resource
management is necessary to ensure that two tasks cannot
occupy the same resource at a time. Resource
management prevents priority inversion and deadlock in
some extend. Priority inversion can be avoided by
Priority Ceiling Protocol (PCP) [3]. Each resource is
assigned a static priority called ceiling priority. PCP
temporarily raises the priority of the task to the ceiling
priority of the resource if the priority of the task is less
than the ceiling priority. The original priority of the task
will be restored latter whenever the resource is released.

E. Counters and Alarms: Counter and alarms
are used in OSEK operating system for processing
recurring events. Counter is derived from hardware or
software timer. Alarms are attached to the counter. More
than one alarm can be attached to one counter. Alarm
performs actions like task activation, set event and
execution of callback functions at their expiry points.

F. Events: Events are used for synchronization
among tasks. They are assigned only to extended tasks.
Waiting for an event causes task enters into waiting state.
When the event is set by another task, the state of earlier
task will be changed from waiting to running or ready
state.

G. Error Handling and Hook Routines: Hook
routines are user defined code within the OS. They are
called by the operating system on special situations
depending on OS implementation. They have higher

priority than all tasks and cannot be interrupted by
category 2 interrupts. Different Hook routines used in
OSEK are startup hook, shutdown hook, error hook,
post-task hook and pre-task hook.

AUTOSAR OS

The functionalities provided by AUTOSAR OS
are backward compatible with OSEK OS. New concept
introduced in AUTODAR is schedule table. Schedule
table encapsulates a set of expiry points and thus address
synchronization problem. Task activation and event
setting are the actions associated with expiry elements.
One or more actions can be assigned with one expiry
element. Schedule table has a duration which is specified
in ticks. OS will repeatedly process schedule table and
will fire each expiry point in turn. Structure of schedule
table is shown in Fig. 3. Schedule table may contain a
set of tasks to activate and set of events to set. Task
activations should be processed first then events. There
are two types of schedule tables. Single shot schedule
table will stop after executing all expiry points.
Repeating schedule table will loops back to initial expiry
point after processing final expiry point. The repeating
period is equal to the duration of repeating schedule
table. It is possible to start schedule table from an
absolute or relative value of the counter driving the
schedule table. Schedule table expiry elements are
synchronized with the underlying counter. Two types of
synchronization are possible. They are explicit
synchronization and implicit synchronization [4].

AUTOSAR OS provides facility for stack
monitoring. Stack monitoring will find out whether a
task or ISR exceeded specified stack usage at the time of
context switch. AUTOSAR supports all the operating
system objects of OSEK/VDX OS. The collection of
these objects (tasks, ISRs, alarms, schedule tables,
counters, and resources) forms an OS application. The
rights to access objects from applications might be
granted during configuration. OS application may be
trusted or non-trusted. Trusted applications are allowed
to run in privileged mode and they have unrestricted
access to memory and OS API. Non trusted applications
have restricted access to memory and OS APIs.
AUROSAR OS provides both memory and timing
protection [4].

AUTOSAR Multicore OS Specifications
 AUTOSAR version 4.0 specifies extension to
AUTOSAR OS and provides mechanism to support
multicore micro-processors. The Multi-Core OS in
AUTOSAR is not a virtual ECU concept, instead it shall
be understood as an OS that shares the same
configuration and most of the code, but operates on

[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

different data structures for each core [5]. Object (Task,
Counter, Alarm, Resource ….) IDs should be unique
across all cores. Every object ID should be referring to
one entity independent of the core it is residing. This
applies to all objects without considering whether they
are shared or not. The OS can be entered on each core in
parallel. TASKs and ISRs cannot dynamically change
cores by means of the scheduling algorithm.

Fig. 3 Structure of Schedule Table

A. Locatable Entity (LE): LE is the term used to

refer the object which is contained entirely on one core.
The assignment of objects to cores is defined at
configuration time.

B. Start-up: Core start-up is depending on the
hardware. Hardware starts only one core called master
core. All other cores remain in halt state until they are
started by the software. In this master slave start-up
behavior the master core does not need software
activation. After startup StartOS() API will be called on
each core. StartOs provides two synchronization points.
One is before the execution of start-up hook and another
is after the execution of application specific StartupHook
and before the scheduler is started. Fig. 4 shows the
multicore master-slave start-up behavior. StartOS() API
is called by passing application mode as argument. In
multicore OS all the cores shall be run in same
application mode.

C. Shutdown: AUTOSAR 4.0 introduced a new
API ShutdownAllCore which facilitates simultaneous
shutdown of all cores. The API executes application
specific shutdown hook followed by a synchronization
point. All cores should be synchronized before calling
shutdown hook. ShutdownOS() API is called on each
core to shutdown that particular core.

Fig. 4 AUTOSAR Multicore Start-up behavior

The hardware assigns a physical core id to each

core. This physical core id cannot be used as an index in
case of core specific variables. So mapping from
physical core id to logical core id is necessary. Mapping
of applications and other software components is based
on the logical core id. Counters can be incremented only
by the core on which it is assigned. Counters on one core
can drive alarms and schedule tables residing on same
core.
 Inter OS-Application Communication (IOC) is
used in AUTOSAR 4.0 for communication between
applications. If applications resides in different cores
then IOC become inter-core communication. IOC may
not necessarily require cross core communication. All
communication must be routed through RTE (Real Time
Environment) on server and on receiver side. IOC
supports 1:1 communication and N:1 communication, i.e,
one sender one receiver communication and multiple
sender and receiver communication. IOC provides both
unqueued and queued communication services.

MPC5668G Architecture

MPC 5668G is Freescale’s dual core
microcontroller. It is a 32-bit microcontroller with power

PC architecture. It supports all automotive
communication protocols. It provides 592 KB static

RAM and 2 MB flash memory. 592 KB RAM is split
into two blocks. MPC 5668G cores are e200z6 and
e200z0. e200 processors are designed deeply for

embedded control applications that require low cost
solutions rather than maximum performance. It is an

automotive focused product designed to satisfy need for
integration of electronic features within the vehicle. It

[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

can be used as automotive gateway. Both cores have
same instruction set, same set of registers and same data

representation. MPC5668G offers symmetric
multiprocessing because the RAM is shared between

both cores [6].

Fig. 5 : MPC5668G Block diagram

Implementation Details

A. Core Identification: e200z6 and e200z0
processor register array contains a processor control
register called Processor Version Register (PVR). For Z6
core PVR value is 0x8112_0000 and for Z0 core PVR
value is 0x8171_0000. The GetCoreID() API will read
the value of PVR register. Depending upon the known
values of PVR register each core is differentiated by
GetCoreID(). GetCoreID will return the logical core id of
each processor. For example, Z6 core logical id is 0 and
Z0 core logical id is 1. Logical id s assigned by the OS
developer.

B. Start-up: e200z6 is the master core. So after
booting, Z6 core will be active. Master core will activate
the slave core by calling StartCore(Z0). When calling
StartCore(Z0) the Z0 core will be activated by resetting
the value of reset vector register(Z0VEC) of Z0 core.
After startup each core will call StartOS() API with
application mode as argument.

C. Synchronization: As discussed above
StartOS() will synchronize the cores twice.
Synchronization point is defined between cores to make
sure that system is initialized properly [7].
Synchronization is performed by using a counter and a
semaphore. Counter is a global variable that indicate how
many cores had to be synchronized. At the
synchronization point, each core will increment the
counter variable and test whether the counter value equal
to the total number of cores. If counter value is less than
total number of cores, the core will wait.

D. Scheduling: Each core have different
scheduler and priority ring buffer for scheduling tasks
assigned to it. Core on which the task to be executed is
specified by the configuration file. If task is assigned to

Z6 core, the task is added to the priority ring buffer of Z6
and scheduler of Z6 will handle task execution.

E. Inter-core task Activation: Task activation is
a type of alarm expiry action. Task assigned to one core
can be activated by an alarm residing in different core.
When a task is activated, the task id will be added to the
priority ring buffer corresponding to the core on which it
should be executed. The scheduler of that core will
consider the task at the next scheduling point.
AUTOSAR multicore OS supports inter-core event
handling also.

F. Spinlock: Spinlock implementation uses
atomic set-and-test functionality provided by the
hardware. Spinlock is used to protect critical section and
shared memory. Spinlock may lead to deadlock. A task
can be protected from deadlock either by wrapping the
spinlock with SuspendAllInterrupts() API or by
preventing nested spinlock calls. Nested spinlock calls
can be avoided by assigning numbers to resources in
increasing order. The resource numbers will be added to
a linked list. When a task trying to acquire multiple
resources, it can take resources only in the order in which
they are stored in the linked list.

G. IOC : The IOC allows one or more data item
transfer per atomic communication operation. A data
item can either be a value for atomic basic data types or a
reference for user defined data structures. IOC send
function writes data to the buffer in memory area which
is shared by both sender and receiver. Concurrent access
to the data in buffer is protected by using spinlock. Each
atomic communication has to be specified in the IOC
Configuration Description in a standardized XML
format. Sender-Receiver communication can be
performed in two semantics; first one is data semantics
(last-is-best semantics) and second is event semantics
(First-is-best semantics). 'IsQueued' attribute of data
element is used to distinguish between data and event
semantics. In event semantics this attribute is set to true
and in data semantics this attribute will be set to false [8].
There is one description block per communication
operation specifying
- Unique identifier
- Data type(s)
- Sender information
- Receiver information
- Name of callback function on receiver side in case of
notification.
-Communication is queued or unqueued (last is best)
- In queued communication: Length of the queue
Software components send items in queued semantics or
unqueued semantics. RTE_Send_<id>(data) call will be
mapped to IocSend_<Id> (<data>). Fig. 5 shows IOC
with shared memory. Concurrent access to shared
memory results in data inconsistency. It is very important

[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

to ensure data consistency. One way to ensure data
consistency is task blocking strategy [8]. Data
consistency can be achieved by protecting the code
which is handling shared memory using spinlock.
a) Last-is-Best Semantics
 This semantics is used for data transmission.
Buffer used for this communication use a single element
queue or a single memory location. Each call to send
function will overwrite data in the buffer. i.e, the old
value will be replaced by the new value. Read and write
operations should be atomic. For data consistency, read
and write operations are protected by interrupt disabling
and spinlock. Read access always return last received
data. When new data received, previous value will be
discarded without considering whether it was read or not.
On sender side, AUTOSAR supports two functions
which are using Last-is-Best semantics. They are
IOCWrite_Id (data) : - used to transfer single data
element
 IOCWriteGroup_Id(data1, data2, …) :- used to
transfer multiple data elements
Receiver side functions are
 IOCRead_Id (data) : - used to read single data
element
 IOCReadGroup_Id(data1, data2, …) :- used to
read multiple data elements
b) Event Semantics

Events are important and they have to be
handled appropriately. Loss of events cannot be
tolerated. So isQueued attribute should be set to true. The
received events have to be buffered into a queue. The
queue should have a fixed length which is specified in
configuration file. Send operation will put the event to
the end of the queue. Receive operation will read event
from front of queue. If queue is full received event shall
be discarded.

Fig. 5 Inter OS-Application Communication through RTE

 Sender side event semantic functions are
IOCSend_Id (data) : - used to transfer single event
IOCSendGroup_Id(data1, data2, …) :- used to transfer
multiple events

Receiver side functions are
IOCReceive_Id (data) : - used to read single data element
IOCReceiveGroup_Id(data1, data2, …) :- used to read
multiple data elements
H. Building and Debugging
 Compiler used is Wind River Diab compiler[9].
It provides the control and flexibility required to meet the
demands of embedded software development. It is
compliance with latest ANSI and ISO standards for C
and C++. It supports wide variety of target architectures
including Power PC. Lauterbach is used for debugging
the program. Lauterbach PowerTrace and Trace32
software debugger provide instruction trace, memory
monitoring capabilities, and kernel mode debugging.
These capabilities enable the software developer to
diagnose real-time software failures and memory
corruption issues such as stack overflow and wild
pointers. For providing on-chip debug logic, processors
using JTAG (Joint Test Action Group) interface. JTAG
is IEEE 1149.1 Standard Test Access Port and
Boundary-Scan Architecture. It allows developers to
communicate with the chip and to perform operations
like single stepping and breakpointing. Multicore
processors required debugging of multiple cores via a
shared debugging interface. Multicore processors does
not provide separate JTAG interface for each core.
Lauterbach provides provision to address several cores
via joint JTAG interface and synchronous debugging.
TRACE32 is an emulator system for MCUs that provides
emulation memory and a bus state analyzer.

Fig. 6 IOC Functions using shared memory

Conclusion

Due to the increasing demand for electronic
security and comfort in vehicles it is necessary to use
more multi core ECUs. It is the only way to increase the
performance. AUTOSAR 4.0 is a first step made in this
direction. In the area of code migration from single core
code to multi-core code there is an enormous
development pressure of automated solutions. How far
and fast multi core processors spreading depend on a
number of criteria. Multicore operating system is used in

[Devika, 2(10): October, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[3035-3040]

cars if there is a large need for more processing power
and the performance advantage of multi processor ECUs.
Multi core ECUs can only cover the market, if the costs
of the software development are not growing dramatic.
This can only succeed if existing single core code can be
migrated cost-effectively on multi core systems.
AUTOSAR 4.0 is the preliminary version of multicore
operating system. Additional features that can be added
in future are dynamic allocation of tasks to cores, direct
access from BSW modules to IOC services, activation of
task on receiver side as a result of IOC notification.

References

[1] Quinn Michael J, Parallel Programming in C
with MPI and OpenMP McGraw-Hill Inc. 2004.
ISBN 0-07-058201-7

[2] OSEK/VDX Operating System specification
2.2.3

[3] R. Rajkumar and J. Lehocsky. Priority
Inheritance Protocols: an Approach to Real-
Time Synchronisation. IEEE Transaction on
Computer, 39(9):1175–1185, 1990.

[4] AUTOSAR Specification of Operating System
Version 3.0.2

[5] AUTOSAR Specification of Multicore OS
Architecture version 4.0

[6] MPC5668x Microcontroller Reference Manual
for MPC5668E/MPC5668G, Document
Number: MPC5668XRM, Rev. 2, 09/2008

[7] Configuring a Mixed Asymmetric Multicore
Application for StarCore DSPs, Freescale
Semiconductor Application Note, Document
Number: AN4155, Rev. 0, 10/2010

[8] AUTOSAR Specification of RTE Software,
version 1.0.1

[9] Wind River Compiler for PowerPC, User's
Guide 5.7

